如欲瀏覽中文版本,請按此。
The world is digital. You and everyone around you lives and breathes data, creating terabytes of information every second. What happens to all this data? Does it have any future value, any hidden answers that we’re not able to see in the physical world?
If you have an aching curiosity for such answers, then exploring Data Science might be the field for you.
Simply put, Data Science is a special interdisciplinary field that deals with deriving actionable insights from vast amounts of structured and unstructured data. These insights are meant to empower businesses to take better actions to increase sales.
Now that’s a business perspective. But for you, Data Science is all about making meaning from raw data, seeing future trends and patterns, and devising solutions accordingly.
Data is the new gold. Every industry that wishes to thrive in the coming decades will need to rely on data. It’s not just important for staying competitive, but also for businesses to retain customers and maintain engagement.
Businesses need to learn what customers are inclined towards, what are the new emerging trends and what products/services are going to be the most in-demand. As per Market Research Future survey, the global data analytics market size will reach USD 132,903.8 million at a 28.9% CAGR by 2026.
As compared to the world's leading tech cities like London, Singapore and Silicon Valley, Hong Kong was lagging way behind in data science positions. With the government’s push towards tech startups, this changed drastically and created an enormous demand for data scientists in sectors like supply chain, real estate, hospitality, and finance.
Data analytics is one of those areas where the quality of talent is a critical factor. The analytics or business intelligence department of a company will not thrive unless it has expert data scientists with the perfect combination of technical expertise & problem-solving ability.
The future lies in amassing, understanding and evaluating data. With more and more industries leveraging data and tech to lead the market, data science is definitely future-proof. No wonder it is being hailed as the sexiest job profile of the 21st Century.
Since 2017, data scientists and analysts have become one of the top 10 most in-demand tech professionals in Hong Kong, as per The School of Data Science at City University in Hong Kong.
Read Also: Top 10 Uses of Python in Business
Data Science is indeed a vast field. But more importantly, it's a very new field that is constantly evolving and growing. Becoming a master in this field is quite impossible at this point. But finding the right career path is quite possible.
Your curiosity must have compelled you to research a lot on what data scientists do. Do you feel overwhelmed by reading big words like Data Mining, Data Warehousing, Machine Learning, and Data Analysis, which make sense to you as individual fields but can’t show you the whole picture in regards to data science? Don't worry, you’re not alone! Let’s get this confusion sorted out.
Forget all those big terms for now. Just focus on your personal traits and inclinations, and let’s see what kind of a career path you can take in data science. You must have seen various types of job roles and postings across the internet with fancy names. But at the crux of it, the career offerings in data science boil down to 3 main categories. Let’s explore them and see what kind of people usually excel in each category.
Read Also: The Top 7 Myths About Being a Data Scientist
This must give you a basic perspective of how to switch to a career in data science. Let’s take a look at some job trends for the above-mentioned categories, specific to Hong Kong. According to PayScale:
As per Glassdoor:
To clearly understand what makes you eligible for a career in data science, let’s take a look at what makes the foundation of data science.
Keeping these pillars in mind, let’s explore what kind of education you must have to be eligible for a career in data science.
These are some of the courses one can take and proceed with an advanced course in data science. But in reality, you can have any background and still get a shot at a data science career by doing a coding bootcamp like full-time data science & machine learning bootcamp. It’s all about having the right skills and landing the right role.
But before we go any deeper, let’s clear up the confusion with those big terms. Let’s see what each term means in regards to data science.
Read Also: Is a Data Science Bootcamp worth it to get a Data Science Job
Data Science is an umbrella term for all the below-listed terms.
Programming skills along with knowledge of statistics and problem-solving skills, make up the arsenal of an eligible data scientist. Some of the in-demand and trending data scientist skills are:
This section shall give you the answer to one of the most aching questions you may have had, i.e. What's the difference between data engineer vs data scientist vs data analyst?
Once you have a basic understanding of what job profile you’d like to go for, it’s time to understand what kind of specific roles exist in each of the 3 main categories and what kind of skills each role requires.
Building software to create a viable data infrastructure to mine new data, organise raw data and store data.
Doing an extensive data engineering course Hong Kong could open up huge opportunities in this category.
Analysing data patterns, relations and finding answers for other teams
Doing an extensive machine learning & data science course could open up huge opportunities in this category.
Think creatively based on a data analyst’s findings and make decisions or predictions based on a thorough evaluation. A big part of it entails machine learning roles and responsibilities.
In this category, Data Scientist is usually the only job role that exists across industries. There can be different seniority levels, but the job profile remains the same.
Doing a part-time Python course in Hong Kong could open up huge opportunities in this category.
This depends on your existing skill base and qualifications. If you don't have the capacity or time to commit to a full-time course, consider a part-time opportunity. This will give you good exposure to the industry and help you better understand the nuances of various jobs.
Xccelerate offers a beginner friendly part-time python course and part-time data science course to help you learn the basic knowledge in the following categories:
If you wish to learn all the fundamentals from scratch and then move on to a new career, then going for a more comprehensive course is a better idea. Xccelerate's immersive coding bootcamp in Data Science and Machine Learning is great for amateurs. There are no prerequisites and it is suitable for anyone who wants to learn Data Science from scratch.
This course opens up many job opportunities like;
If you already have a strong background in coding, especially in R and Python, you can choose a more advanced data science course with strong career support that focuses on domain expertise, advanced data science tools and career support.
Data Science in Hong Kong is booming! This is a great time to invest in the skills that can lead to a very interesting and rewarding career. Due to the lack of reputed universities with specialised courses in data science, your best option is to complete a graduate or an undergraduate degree and go for a data science course offered by independent institutes, like Xccelerate.
If you are at a choice point in your career and need someone to help you navigate professional challenges. You can make an appointment to our complimentary 1-on-1 Career Consultation and receive personalised career advice.
Read Also: Is Data Science Difficult to Learn?